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DYNAMIC BEHAVIOR FROM ASYMPTOTIC EXPANSIONS
by

Jack K. Hale and Luiz Carlos Pavlu

ABSTRACT

The purpose of this paper is to discuss stability properties of
solutions of periodic and almost periodic differential equations containing
a small parameter. The existence of the solution can be obtained in the
first approximation but the stability only after k-approximations.

We obtain the results using asymptotic expansions, higher order

averaging and the concept of exponential hyperbolicity of order k.




1. Introduction

In the study of a certain class of models, for the spin/orbit resonance
of the planet Mercury, in particular, and for nonlinear resonance in general,
Murdoch [6] encountered an interesting problem in the stability of periodic
solutions of periodic differential equations containing a small parameter. The
existence of the periodic solution could be obtained from the first approximation,
but the stability could not.

Murdoch and Robinson [7] resolved the difficulty through the introduc-
tion of the concept of "strong k - hyperbolicity" for the period map. 1t is
the purpose of this paper to show that the same results are valid under the weaker
hypothesis that the original vector field has an "exponential dichotomy of order
k'". Since the latter concept does not assume the vectorfield is periodic, it
is possible to have applications to more general situations as in almost periodic
cases,for example.

In section 2, we introduce the concept of exponential dichotomy of
order k and present a result relative to its "roughness". 1In section 3,
we present the main result in the periodic case showing that the stability
properties of the periodic orbit can be solved through the latter concept; also,
we give sufficient conditions to ensure "exponential dichotomy of order X"
and some remarks and examples. Finally, in section 4, we solve the almost

periodic case.

2. Exponential Dichotomy of order k.

Let X(t,€) be a fundamental matrix for the linear system:

(2.1) x = EA(t,€)x




where the n x n coefficient matrix A(t,E) is continuous on t € R* and a

sufficiently smooth function of the real parameter ¢ €(0,a0).

Definition 2.1. The equation (2.1) has an exponential dichotomy of order k

if there exists a projection Pe continuous for € € (0, 50), a positive constant

X and a function a(e) = cek, ¢ > 0, such that
IX(t.e)P, X H(s,e)] < k e XEES) 5o
(2.2}

-a(€)(s-t)

|X(t,e) (1-P )X (s,e)| < K e s>t>0

An important property of exponential dichotomies is taeir roughness; that is,
they are not destroyed by smuall perturbations. More precisely, we can state the

following result:

Theorem 2.1: Suppose that the linear system (2.1) has an exponential dichotomy

of order k. Let B€ = B{t,€) be a continuous matrix function, bounded uniform-

ly on t €R, for each fixed € €(0, €)). If [B.| = sup [B(t,s)] = o(lel™

).
0 teR

for N > k, then the perturbed system
(2.3) y = €(A(t,€) + B(t,£))y
also possesses an exponential dichotomy of the same order.

The proof can be accomplished by applying the Contraction Mapping Principle

to the operator

t
TY(t) = X(t,€)P_ + [ X(t,e)Pex'l(s,E) € B(s,e)Y(s)ds -

0

fw X(t,E)(I-PE)x°1(s,e) £ B(s,e)Y(s)ds.
t




Elementary estimates yield:

ITY ()] < K+ 20(e) TKe|B | || V]|

| TY, (8) - TY, ()] < 20(e) 'Ke}B_| ||Y, - Y,

where ||Y}| = sup |Y(t)] and o(€) = e . If ace) ke |B_| < 1 the
>0 £ 2
mapping T has a unique fixed point. Since IBCI = O(IElN) , there exists an

El > 0 such that the latter estimate is valid for €€ (0, El). The remainder
of the proof is easily supplied by following the techniques in Coppel [1].
Corresponding results for the half-line R_ may be obtained by the

change of variable t -+ -t and the same question for the whole line R can be

answered in terms of the results for the two half-lines or directly using the

operator:
t [ J
TY(t) = f x(t,s)PEx'l(s,e)eB(s,E)Y(s]ds —J X(t,E)(I-Pe)x—l(s,e)uﬁts.t)Y(s)ds
t
Corollary 2.3 Consider the perturbed system
° N+1
(2.9) y = eA(t,e)y + e “f(t,y,e)

where f: R x @ < R" x [0,60] + R s uniformly continuous and bounded in
t € R for each (y,€) fixed in Qx*[0,€,] and f(t,0,€) = 0.
If the unperturbed system (2.1) has an exponential attraction of order
k < N then, for small €, the solution y = 0 of (2.4) is uniformly asymptotically
stable.
More generally, results of this kind can be extended to a system of the

form




(2.5) X = AL, Ox + eV LE(L,x,6) + g(x,€)

where g(0,€) = 0, %f-(ﬂ, ) = 0.

The reader is referred to Hale [4] and Coppel [1] for details.

Remark: In (7}, Murdoch and Robinson consider a system X = ef(t,x,€),
where €>0 is a small parameter, f is continuous, w-periodic in t and
smooth in X and €, and the Poincare map UE: R" > R" given by UE(x) = ¢(W,x,e)
where ¢(t,x,e) is the general solution of the system above satisfying
$(0,x,€) = x.

Suppose that the Taylor Series of U, 1is available; that is,

Us(x) = Ve(x) + €k+lﬁe(x) where Ve(x) = X + eUl(x) L ekUk(x). If there is

a x, such that Ul(xo) = 0 and U{(XO) is nonsingular, the Implicit Function

0
Theorem give us fixed points x*(€) of V_(x) and X(€) of Uc(x) with
X' (e), X(e) » x, as € 0.

The question is: if x*{(€) is a hyperbolic fixed point for Ve , will
x(€) be a hyperbolic fixed point of U?

This, in general, is not true, except when the first approximation
U1 is hyperbolic which is well known.

They resolved the problem introducing the concept of "strong k-
hyperbolicity" and giving sufficient conditions to obtain "strong k-hyperbolicity'.
The concept of exponential dichotomy of order k is more general

and can be applied to 'the almost periodic problem'" as we will show in the

last section.




3. The periodic case.

Suppose x € Rn, € > 0 a small parameter, f: R x R" x (0, 50)-, R"
analytic in ¢ € (0, ao), w-periodic in t for each fixed (x,e) and sufficiently

. n .
smooth in x € R. Consider the system:

(3.1) x = Ef(t,x,t)

Suppose the asymptotic expansion, in powers of €, of the system (3.1), up to

order N 1is known,

2 N+1

(3.2) k= ef (6, + €26,(t,%) +...+€NfN(f,x) « e Ee e

~

where each fi’ i=1,2,...N is an w-periodic function in t and f is
w-periodic for each (x,e) fixed.

Using averaging up to order N, we may choose a suitable change of
coordinates x -+ y, w-periodic in t, which eliminates t from the first N

terms in the right-hand side of (3.2). The resulting system has the form

(3.3) y = €F(y) *+ ... + CN'f'N(y) + eN“;(t,y,ﬁ)

A

where f has the same properties as f before. If there is a Yo such that

of
Ta(y0)=0 and i;kyo) is nonsingular and, furthermore, if Ai is an eigenvalue

F (v 8?1 vy)
of ——3;—-— and Re A, | ——-?ST——] #0,1i=1,2,...n, then we can conclude

existence, uniqueness and stability properties of the periodic solution
x*(t,€) of (3.1) from known results, see Hale [4].
Actually, in this case, we have an exponential dichotomy of order

one. In what follows, we discuss a more general situation. That is, supposc
3‘?1 (YO)
ay

at ieast for some i, 1 <i <n, we have Re Ai[ ] = 0 and consider
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the equations.
(3.4) X = EF(x,€)
where F(x,t) =.?1(x) + i?z(x)+...+€N?&(x) and
(3.5) X = LR(x,e) + e e X,

Theorem 3.1. Suppose fi, i=1,2,...N, f satisfies the conditions enumeratcd

in this section., 1If there is an xO

nonsingular, then there exist an € > 0 and functions XN(C) and  x*(t.t),

both analytic in €, x*(t,e) continuous in t for each fixed t €[0,L1],

ol .
< X ,0) =0 —(x,0 S
such that F(XO 0) 0 and 8x(xo ] 18

x*(t+w,e) = x*(t,g), xN(a) is an equilibrium point of (3.4), x*(t,c) satisfies
_— - _ N _ N
(3.5), xN(O) = x*(t,0) = Xo and ||x*(t,e) - xN(L)“ = 0(¢ ).
Furthermore, if the linear variational equation of (3.4) at the
equilibrium point xN(a) has an exponential dichotomy of order L , k < N,

then the linear variational equation of (3.5) at x*(t,c) also has an exponential

dichotomy of the same order.

To prove the theorem we need the following result:
Lemma 3.2: Consider the system
(3.6) X = eA(e)x + f(t)

where x € Rn, A(e) 1is a continuous matrix function of the parameter ¢ > 0
and f € Pu , the Banach space of the continuous w-periodic functions.

If det A(0) # 0, then there exist K > 0, £y > 0 such that (3.6) has

a unique solution

#(E)f e Pu and  [w(E| < K/([f| 6 <e<e.




Proof: Since det A{0) # 0, there exists an hO > 0 such that the unperturbed
system X = £A(E)x is noncritical with respect to %
This implies the existence of a continuous linear operator H ()

0 << CO defined by

(HEYE)(T) = ( L[e-cA(g)w-I]-]e_éA(h)Sl/tf(t+s}ds

0
Furthermore, li%* e[e_t‘A(e)w—I]-l = -I’AA(“J_I. Thus, (<) has a uniform
£
bound on (O,LO] given by [#(e)f] < K| f] . More details can be found in
Hale [47.

Proof of Theorem 3.1: Consider the system
(3.5) =G0+ et Eee,x,e)

. _ . oF
If there is an x0 such that F(xO,O) = (0 and det T (x0,0] # 0,

by the Implicit Function Theorem, for ¢ small, there is a unique xN(E) such
- : N gy = e . L. . .
that xN(O) Xg and F(xN(b), ) 0. xN( ) is the equilibrium point of the

autonomous system
(3.4) X = €F(x,E€)

Using the transformation x + y defined by x = xN(E) + v (3.5) becomes
(3.7) v = EF(x.(E) + y,€) + eN‘lf(t (€)+y,€) S IF (x..(£),€)v
: y = EFy(®) + Xy (£147,€) = g Oy (9,0,
N+17
+ EG(y,&) + € Tf(t,x (E)+y,€)

where G(0,t) = 0 %g (0,8) = 0.

Equation (3.7) can be written in the form

(3.8) ¥ = CA(E)y + E[G(y,€) + € E(t,xy(1) ¢y £]
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where A(e) = gg (XN(L),ﬁ) = %5 (xO,O) + €F(e) = A(0) + LE(L).

A solution y of equation (3.8) in E%L must satisfy

(3.9 H(y,€) =y - ¢t H(E)AN,¢t) = 0

where % : Qﬂ»x(O,EO] > f?;. The lemma 3.2 and the properties of ¥ and
() give us a unique W-periodic solution v* of (3.8), for t sufficiently

small, defined by
yt= € H(E)[G(*,€) + EVF(,x (2] + v, 0)].

Since |5.5Y(€)| < K, using successive approximations with y_ = 0, we obtain

0
— N . . . .
[y*[ < K € ; this shows that there exists an w-periodic solution x*(t,t) of

(3.5), x*(+,0) = x ((0) + y*(+,0) = x such that [[x*(+,0) - x ()] = (™).

0
The linear variational equation of the system (3.5) at the w-periodic

solution x*(t,e) 1is given by

.—£ N+l_a__%_ * - ” =
Z =€ x (x*(t,e),e)z + € X (t,x*(t,e),e)z =

(3.10) = E(%g (xN(E),ﬁ) + O(EN))z + el %f (t,x*(t,e),c) z =

3F

ax (xy(€).€)z + o(eN )

This means that the linear variatiomal equations of (3.4) at XN(E] and (3.5)
at x*(t,e) coincide up to order N and a simple application of theorcem 2.1.
completes the proof.

Sufficient conditions for exponential dichotomy of order k <N,
equivalent to those given by Murdoch and Robinson for strong k-hyperbolicity,

can be given as follows.




arrars
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Lemma 3.3. Consider the system
(3.11) X = cA(e)x
n . . 2 N
where 1€ R, A{(e} is a nx n matrix such that eA(e) = aAl + € A2+...+c AN +
o™y,

If the eigenvalues of A, are distinct and if the eigenvalues ¢ ki(c)

1
of gAl+...+eNAN, suitably numbered, satisfy:
k.
Re ¢ Xi(e) < -C E i=1,2,...r.
Re € Ai(s) > ¢ Ek i = r+l,....n

for some k < N and some positive constant c, then the equation
(3.12) X = (EA.+...+ENA)x

1 N
has an exponential dichotomy of order k <N.

In fact: Consider A(g) = A, + 0(€). If A  has distinct eigenvalues,

1 I
N-1

A(g) = A L.t E AN has distinct eigenvalues Ai(e) for € small. The

1

matrix ﬁf; of eigenvalues is nonsingular (even for € = 0) andife-lA(EJiﬁf

Diag (X () i =1,2,...n. If x =2% y, the equation (3.10) becomes

(3.13) y = Diag (ex, (€))y

with fundamental matrix Y(t) = Diag (exp (Eki(e))t.
Using the hypotheses, reordering if necessary and taking the projection

pE = (Ir xr,0)n x n Ye obtain

| YR Y (s) [ = |piaglexp. A () (t-5) ]| < R
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and

k
|Y(t)(I-PE)Y_1(s)| < ¢7CE (s-t) >t i =7r+l,...,n.

Since (3.13) is similar to (3.12) the fundamental matrix X(t) of
(3.12) satisfies

k
~-cE -
ce (t-s) t

Ix)pxts)] <me > s

k
-cE& (s-t) s

IX(0) (1-POX H(s)| <M e >t

with sume projection and same order.

Remarks:
1} Actually, to obtain an exponential dichotomy, we do not need to have

distinct eigenvalues as the following example shows:

2 n
. -£
(3.14) X = “)x
0o -€°

where x € R2 , € <<1, n> 2,

The fundamental matrix X(t) of (3.14) satisfies:
2

- - € -
x(t)X 1(s)| <e 1/2€%(x S), t > s where P = 12)(2 and we have an "exponen-
tial attraction of order 2.'" Observe, if n=2, that Al =0, A, =(ﬁ1 1 ) and
0 -1
. 1 1/¢ :
the matrix i§:= of eigenvectors becomes unbounded when € — 0.
0 0

2) The example given by Murdoch and Robinson, to show that the hyperbolicity,
present at order Ez, may be destroyed by a perturbation of order 53, can be

ef;A(e)t

obtained, up to order g? considering the solution operator at

t=1 of the system (3.14), when n=1.

2 4
eCA(E) = (l 0) + £ (0 1)4- € (-1 0)
01 0 0 0 -1




2 )

In fact, in this case the hyperbolicity present at order <7, (‘1’2 =1 -7,
is destroved by 00 e3 for example . However, the fundamental matrix
2 0
2
e-EZt ﬂtc-e“t
Xi{t), given by x(t) = © —ezt , does not have an
0 e

exponential dichotomy of order 2.
The same problem may occur if we have in the first approximation,

a double eigenvalue in the imaginary axis.

4. The almost periodic case.

Consider the svstem

(4.1) X = e f(t,x,e}

where f is uniformly almost periodic in t € R, analytic in ¢ > 0 and

.. . n
sufficiently smooth in x, x € R .

Consider the expansion

(4.2) X = ef (1,x) .0 ENfN(t,x) s e lee xoe

~

where the fi’ i=1,2,...N, and f are almost periodic in t with the same
properties as f.
Under some nonresonance hypothesis on the frequencies of the fi’ we

can average up through order N to obtain the following system:

(4.3) = eF ) 4 ez?zcx) oob CN?N(x) + e x0)

This system can he seen as a perturbation (almost periodic) of the

autonomous equation !

(4.4) x = F(X,¢€)
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-~

where F(x,t) = C?l(x)*...+EN?&(x). The method used in the proof of theorem
3.1 does not work in this case but, with a slight modification we can establish

the following.

Theorem 4.1. Suppose fi’ i=1,2,...N, f satisfy the conditions cnumeratced

in the beginning of this section. _

bfl

If there is an x such that f (x.) =0 and =—- (x.) 1is nonsingular,
170 X 0

0
then there exist an EO > 0 and a function xN(E) analytic in t, 0 < v < Yo
xN(O) = xO, xN(E) is an equilibrium point of (4.4).

Furthermore, if the linear variational equation of (4.4) at xN(t)
has an exponential dichotomy of order k < N/2 then, in a small neighborhood
of xN(L), the equation (4.3) has a unique almost periodic solution x*(t,t},

analyvtic in €, x*(+,0) = x and the linear variational equation of (4.3) ut

0
x*(t,e) also has an exponential dichotomy of order k for t small enouph
(possibly with a positive constant ¢ smaller than ).

To prove the theorem, we need the following:

Lemma 4.2. Consider the system
(4.5) X = € A(E)x + f(t)

where x € Rn, A(E) is a continuous matrix function of ¢ > 0 and f € P,

the Banach space of almost periodic functions., If the autonomous system

x = ¢A(e)x has an exponential dichotomy of order k, then there exist K 0,
€g > 0 such that (4.5) has a unique almost periodic solution #(:)f € YFP
for 0 < ¢ < £y and l‘jf(e)f] < K/ek[fl .
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In fact, there exist a projection PE and positive constants M and ¢
such that the fundamental matrix X(t) of the autonomous system x =t A(t)x

satisfies

- —e(e-
IXE(t)PEXEI (s)] <Me "~ (t-s) t>s
-1 -c€k(s—t) .
X () (A-PIX " (s)] < Me s > t.
Since _#(e)f is given by
t 1 ® 1
e = J Xo (£)PX™ (s)£(s)ds - L X (1) (1-P X () f(s)ds
elementary estimates vield | % (e)f | < K/gjfl
Proof of Theorem 4.1. The first part of the proof is similar to the periodic

case and, making the transformation of variables x = xN(L) + VvV  We cun

consider directly the equation

(4.6) F=eAe)y + E[60,E) + € F(Ex (L) + v,6)]

where A(g) = %% (xN(C],E), G(0,€) = 0, %5(0,6) =0 and f as before. 1If

there is a solution v* € P of (4.6), this solution must satisfy the

equation .
(4.7) y - CH(EIG(Y,E) + £ (e xy(e) + ¥,0)] = Hly,e) = 0

where % (¢) is the linear operator defined in Lemma 4.2.

Suppose the linear system x =eA(e)x has an exponential dichotomy

o

are
ay

of order k. Scale y = ekz in formula (4.7) and, if k < N/2, H,

continuous in a small neighborhood of the origin, H(0,0) = 0 and %g (0,0) = 1.
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Using the Implicit Function Theorem, we obtain a unique almost periodic solution

),* = .\:*(t,l‘:) Of (4.6), analytic ln £ € (O’EI) for some bt < LO’ y*(o ,0) = Q.

1

This means that equation (4.3) has a continuous almost periodic solution

x*(t,e) = xN(c) + y*(t,c), analytic in ¢, x*(.,0) = Xo- To estimate
fy*(ese)] = | x*(he) - xN(e)l consider y* = y*(»,¢) given by the formula
4.8) v* =€ A (e)[G(y*,e) + eNf(-xN(a) + y*,e)]

where | % (e)| < K/ e®.  We can proceed by iterations, taking y, =0 and
N/2 +1

if k < N/2 the estimates yield |y*| < K € and the linear variational
equation of (4.3) at x*(t,€) and of (4.4) at xN(E) coincide up to order

N/2. The theorem 2.1 1is applied to complete the proof.

As a special case consider the linear system:

(4.9) X = L (x = €A (t)x +...+ eka, (1)x + eX*loce,e)x

where Ai(t), i=1,2,...k, are matrices whose elements are trigonometrical
polynomials and C(t,€) 1is an almost periodic matrix, continuous in ¢ € [0, £0],

uniformly in t € R.

Consider the averaged system:

(4.10) } =g B(e)y + ek+lD(t.e)y

+ gB, +...+ ek-1p

1 2 0 <g«<c€., and D(t,¢) has the same

where B(e) = B K 0

properties as  C(t,€).
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Suppose that BI has a simple eigenvalue zero, all others
in the left half-plane. Then B(t) has for ¢ =smull, a simple real
= aIE + a2€2 +. and the stability properties of
(4.9) depend only on the sign of the first nonvanishing coefficient uju of
Actually, the following result is valid.

lving
analytic eigenvalue A(€)
¥ 0 , the equation (4.9) has an exponcntial

10

< k-1,
and foreach function f € % the equation

A(g) provided that
Theorem 4.3. Let j, < k-1; If a
0 — 30
dichotomyv of order j0+l

(4.11) X = L (t)x + £(1)

has a unique solution x* = x(t,f,€) € P, stable if a, < 0 and unstable
-0
if a. > 0.
Jo
This result is given by Krasnosels'ki in [5].
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